The homotopy type of elliptic arrangements

نویسندگان

چکیده

We give combinatorial models for the homotopy type of complements elliptic arrangements (i.e., certain sets abelian subvarieties in a product curves). presentation fundamental group such spaces and, as an application, we treat case ordered configuration curves. Our are finite polyhedral CW complexes, and our tools choice acyclic categories (small without loops). As stepping stone, characterization which arise face complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The homotopy type of toric arrangements

A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we build a CW-complex S homotopy equivalent to the arrangement complement RX , with a combinatorial description similar to that of the well-known Salvetti complex. If the toric arrangement is defined by a Weyl group, we also provide an algebraic descr...

متن کامل

Rational homotopy type of subspace arrangements

Remerciements La première personne que je souhaite remercier est évidemment mon cher promoteur, Yves Félix. C'est grâce à sa patience et à sa vision que j'ai appris et apprécié le monde de la topologie algébrique. Une autre personne qui a joué un rôle important dans mon éducation mathématique est certainement Pascal Lambrechts, qui mérite toute ma gratitude pour m'avoir enseigné tellement de ch...

متن کامل

On the Homotopy Type of the Spectrum Representing Elliptic Cohomology

In this paper we analyse the homotopy type at primes p > 3 of the ring spectrum E`` representing a version of elliptic cohomology whose coefficient ring E``∗ agrees with the ring of modular forms for SL2(Z). For any prime (=maximal) graded ideal P / E``∗ containing the Eisenstein function Ep−1 as well as p, we show that there is a morphism of ring spectra [ E(2) −→ E`` b P and a corresponding s...

متن کامل

Rational Homotopy Type of Subspace Arrangements with a Geometric Lattice

Let A = {x1, . . . , xn} be a subspace arrangement with a geometric lattice such that codim(x) ≥ 2 for every x ∈ A. Using rational homotopy theory, we prove that the complement M(A) is rationally elliptic if and only if the sum x 1 + . . . + x n is a direct sum. The homotopy type of M(A) is also given : it is a product of odd dimensional spheres. Finally, some other equivalent conditions are gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2021

ISSN: ['1472-2739', '1472-2747']

DOI: https://doi.org/10.2140/agt.2021.21.2037