The homotopy type of elliptic arrangements
نویسندگان
چکیده
We give combinatorial models for the homotopy type of complements elliptic arrangements (i.e., certain sets abelian subvarieties in a product curves). presentation fundamental group such spaces and, as an application, we treat case ordered configuration curves. Our are finite polyhedral CW complexes, and our tools choice acyclic categories (small without loops). As stepping stone, characterization which arise face complexes.
منابع مشابه
The homotopy type of toric arrangements
A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we build a CW-complex S homotopy equivalent to the arrangement complement RX , with a combinatorial description similar to that of the well-known Salvetti complex. If the toric arrangement is defined by a Weyl group, we also provide an algebraic descr...
متن کاملRational homotopy type of subspace arrangements
Remerciements La première personne que je souhaite remercier est évidemment mon cher promoteur, Yves Félix. C'est grâce à sa patience et à sa vision que j'ai appris et apprécié le monde de la topologie algébrique. Une autre personne qui a joué un rôle important dans mon éducation mathématique est certainement Pascal Lambrechts, qui mérite toute ma gratitude pour m'avoir enseigné tellement de ch...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
On the Homotopy Type of the Spectrum Representing Elliptic Cohomology
In this paper we analyse the homotopy type at primes p > 3 of the ring spectrum E`` representing a version of elliptic cohomology whose coefficient ring E``∗ agrees with the ring of modular forms for SL2(Z). For any prime (=maximal) graded ideal P / E``∗ containing the Eisenstein function Ep−1 as well as p, we show that there is a morphism of ring spectra [ E(2) −→ E`` b P and a corresponding s...
متن کاملRational Homotopy Type of Subspace Arrangements with a Geometric Lattice
Let A = {x1, . . . , xn} be a subspace arrangement with a geometric lattice such that codim(x) ≥ 2 for every x ∈ A. Using rational homotopy theory, we prove that the complement M(A) is rationally elliptic if and only if the sum x 1 + . . . + x n is a direct sum. The homotopy type of M(A) is also given : it is a product of odd dimensional spheres. Finally, some other equivalent conditions are gi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2021
ISSN: ['1472-2739', '1472-2747']
DOI: https://doi.org/10.2140/agt.2021.21.2037